The full text retrieval system can receive constant feedback in the form of user behavior. In the case of a search engine, each user will immediately provide information about how much he likes the results for a given search by clicking on one result and choosing not to click on the others. This paper will look at a way to record when a user clicks on a result after a query, and design a Click-Tracking Network. Then training it with BP neural networks to intelligently improve the rankings of the results for users. Finally, we implement a search and ranking system content-based ranking and improve the search and ranking with neural network. By experiments we have shown good results.