Oxypeucedanin, a furanocoumarin extracted from many traditional Chinese herbal medicines, has a variety of pharmacological effects. However, the independent pharmacokinetic characteristics and bioavailability of this compound remains elusive. In this study, a rapid, sensitive, and selective method using ultra-high performance liquid chromatography–tandem mass spectrometry (UPLC/MS/MS) was developed for evaluating the intravenous and oral pharmacokinetics of oxypeucedanin. After intravenous administration of oxypeucedanin (2.5, 5, and 10 mg/kg), and intragastric administration of oxypeucedanin (20 mg/kg), blood samples were collected periodically from the tail vein. The plasma concentration-time curves were plotted, and the pharmacokinetic parameters were calculated using a non-compartmental model analysis. After intravenous administration of oxypeucedanin (single dosing at 2.5, 5, and 10 mg/kg) to rats, the pharmacokinetics fit the linear kinetics characteristics, which showed that some parameters including average elimination half-life (T1/2Z of 0.61~0.66 h), mean residence time (MRT of 0.62~0.80 h), apparent volume of distribution (VZ of 4.98~7.50 L/kg), and systemic clearance (CLZ of 5.64~8.55 L/kg/h) are dose-independent and the area under concentration-time curve (AUC) increased in a dose-proportional manner. Single oral administration of oxypeucedanin (20 mg/kg) showed poor and slow absorption with the mean time to reach the peak concentration (Tmax) of 3.38 h, MRT of 5.86 h, T1/2Z of 2.94 h, and a mean absolute bioavailability of 10.26% in rats. These results provide critical information for a better understanding of the pharmacological effect of oxypeucedanin, which will facilitate its research and development.