APOBEC1 (A1) is a cytidine deaminase involved in the regulation of lipids in the small intestine. Herpes simplex virus 1 (HSV-1) is a ubiquitous pathogen that is capable of infecting neurons in the brain, causing encephalitis. Here, we show that A1 is induced during encephalitis in neurons of rats infected with HSV-1. In cells stably expressing A1, HSV-1 infection resulted in significantly reduced virus replication compared to that in control cells. Infectivity could be restored to levels comparable to those observed for control cells if A1 expression was silenced by specific A1 short hairpin RNAs (shRNA). Moreover, cytidine deaminase activity appeared to be essential for this inhibition and led to an impaired accumulation of viral mRNA transcripts and DNA copy numbers. The sequencing of viral gene UL54 DNA, extracted from infected A1-expressing cells, revealed G-to-A and C-to-T transitions, indicating that A1 associates with HSV-1 DNA. Taken together, our results demonstrate a model in which A1 induction during encephalitis in neurons may aid in thwarting HSV-1 infection.The human apolipoprotein B-editing catalytic polypeptide (ABOBEC) family is a group of zinc-dependent DNA and RNA cytidine deaminases and consists of AID, APOBEC1 (A1), APOBEC2 (A2), seven APOBEC3s (APOBEC3A [A3A] to A3H), and APOBEC4 (A4). A1, the first APOBEC to be discovered, is known to introduce a premature stop codon into host apolipoprotein B mRNA in the gastrointestinal tract, an event critical for lipid metabolism (17,40,61). The editing by A1 is highly precise and specifically converts C to U at position 6666 of the apolipoprotein B mRNA substrate (46). Along with APOBEC1 complementation factor (ACF), these two proteins constitute the minimal required components necessary for the editing of apolipoprotein B mRNA in vitro (37).Cytidine deaminases first came into the limelight as antiviral factors after A3G was identified as a cellular restriction factor capable of inhibiting HIV-1 dissemination in the absence of HIV-1 virus infectivity factor (Vif) (56). This molecule was later shown to inhibit retrovirus infection by inducing a massive hypermutation of the murine leukemia virus (MLV) genome (23). Further detailed studies revealed that APOBEC molecules are packaged into HIV-1 virions in virus producer cells via a specific interaction with Gag and viral RNA and then exert their deaminase activity in subsequent target cells on a single-stranded DNA (ssDNA) intermediate synthesized by reverse transcriptase (3, 28, 55). Editing can lead to nonsynonymous mutations, such as premature stop codons, in critical proteins (e.g., reverse transcriptase) necessary for virus replication and infectivity, severely impairing the next round of infection (54,64). Extensive studies to assess the antiviral nature of these APOBEC enzymes have been performed across a broad range of retroviruses and hepatitis B virus (HBV) (7,35,36,42,43,50,56,58).Herpes simplex virus (HSV) is an enveloped, double-stranded DNA (dsDNA) virus and a member of the genus Alphaherpe...