The enzyme Activation Induced Deaminase (AID) triggers antibody diversification in B-cells by catalyzing deamination and consequently mutation of immunoglobulin genes. To minimize off-target deamination, AID is restrained by several regulatory mechanisms including nuclear exclusion, thought to be mediated exclusively by active nuclear export. Here we identify two other mechanisms involved in controlling AID subcellular localization. AID is unable to passively diffuse into the nucleus, despite its small size, its nuclear entry requiring active import mediated by a conformational nuclear localization sequence (NLS). We also identify a determinant for AID cytoplasmic retention in its Cterminus, which hampers diffusion to the nucleus, competes with nuclear import and is critical for maintaining the predominantly cytoplasmic localization of AID in steady-state conditions. Blocking nuclear import alters the balance between these processes in favor of cytoplasmic retention, resulting in reduced isotype class switching.3