This paper concerns a comparative study on the tribological properties of Si3N4-10 vol% hBN bearing on GCr15 steel under seawater lubrication and dry friction and fresh-water lubrication by using a pin-on-disc tribometer. The results showed that the lower friction coefficient (around 0.03) and wear rate (10−6 mm/Nm) of SN10/GCr15 tribopair were obtained under seawater condition. This might be caused by the comprehensive effects of hydrodynamics and boundary lubrication of surface films formed after the tribo-chemical reaction. Despite SN10/GCr15 tribopair having 0.07 friction coefficient in the pure-water environment, the wear mechanismsits were dominated by the adhesive wear and abrasive wear under the dry friction conditions, and delamination, plowing, and plastic deformation occured on the worn surface. The X-ray photoelectron spectroscopy analysis indicated that the products formed after tribo-chemaical reaction were Fe2O3, SiO2, and B2O3 and small amounts of salts from the seawater, and it was these deposits on the worn surface under seawater lubrication conditions that, served to lubricate and protect the wear surface.