2007
DOI: 10.1080/01431160701352154
|View full text |Cite
|
Sign up to set email alerts
|

The application of artificial neural networks to the analysis of remotely sensed data

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

3
279
0
3

Year Published

2010
2010
2021
2021

Publication Types

Select...
5
4

Relationship

0
9

Authors

Journals

citations
Cited by 492 publications
(285 citation statements)
references
References 247 publications
3
279
0
3
Order By: Relevance
“…This capacity to generalize means that ANNs can be effective in situ ations where data may be missing or imprecise. ANNs are also able to incorporate prior knowledge and physical constraints into the analysis, while making no assumptions about the statistical nature of the input data [35,36]. This allows for the incorporation of disparate data from many remote sensing and ancillary sources, and can include variables such as terrain height, slope, aspect, soil texture and land cover.…”
Section: Introductionmentioning
confidence: 99%
“…This capacity to generalize means that ANNs can be effective in situ ations where data may be missing or imprecise. ANNs are also able to incorporate prior knowledge and physical constraints into the analysis, while making no assumptions about the statistical nature of the input data [35,36]. This allows for the incorporation of disparate data from many remote sensing and ancillary sources, and can include variables such as terrain height, slope, aspect, soil texture and land cover.…”
Section: Introductionmentioning
confidence: 99%
“…De acuerdo a Mas y Flores (2008), la definición presentada por Haykin (1999) asemeja a las ANNs con el cerebro en dos aspectos, en primer lugar resalta el hecho de que el conocimiento es adquirido por la red desde su medio, a través de un proceso de aprendizaje y por otra parte las fuerzas de las conexiones inter-neuronas, conocidas como pesos sinápticos, son usadas para almacenar el conocimiento adquirido. El primer aspecto está relacionado a las características de los datos de entrada y salida, así como con los mecanismos de entrenamiento de la red, mientras que el segundo aspecto está relacionado con la estructura de la ANN.…”
Section: Generalidadesunclassified
“…La forma en que las neuronas son dispuestas en una red determinan la arquitectura o topología de la red, la cual está estrechamente relacionada con la selección del algoritmo de entrenamiento (Mas y Flores, 2008). …”
Section: Generalidadesunclassified
“…As for dust aerosols, by further assuming that IR AOT can be expressed by IR BT and associated parameters (e.g., surface emissivity and surface temperature)-as demonstrated in the recent success measuring IR AOTs from AIRS and IASI IR hyperspectral (Pierangelo et al 2004;Peyridieu et al 2010;Yao et al 2011)-the implicit relationship between VIS AOT and IR BT can be expected. The expected relationship may be highly nonlinear, and thus the ANN approach is used to obtain the relationship since the ANN is well known as a mathematical tool to solve forward and inverse remote sensing problems (Krasnopolsky and Schiller 2003;Mas and Flores 2008). In this study, we use the so-called Multi-Layer Perceptron (MLP) ANN model, which allows a feed-forward network to link AOT at 550 nm with BTs in the IR bands of MODIS.…”
Section: Artificial Neural Network (Ann) Modelmentioning
confidence: 99%