HVAC systems are important in buildings due to their significant energy consumption, impact on indoor air quality, and role in occupant comfort. Optimizing the operation and control of these systems is crucial for improving energy efficiency and reducing costs. Anomaly detection in HVAC systems aims to optimize energy consumption, improve thermal comfort and indoor air quality, detect and isolate sensor faults, and, more importantly, detect cyber-attacks. By analyzing system data for unusual patterns or unauthorized access attempts, anomaly detection can play a vital role in safeguarding HVAC systems against cyber threats. Detecting and isolating potential cyber-attacks can prevent disruptions in building operations, protect sensitive data, and ensure the continued functionality of HVAC systems securely and reliably. In this study, Gradient Boosting Regressor is used to improve the anomaly detection capabilities of HVAC systems. Traditional anomaly detection methods often struggle to adapt to the dynamic nature of HVAC systems and may generate false alarms or miss critical issues. To address these challenges, we propose the application of Gradient Boosting Regressor, a powerful machine learning technique, to enhance anomaly detection accuracy and reliability. We evaluate the model's performance using real-world HVAC data, comparing it with existing anomaly detection methods. The results demonstrate significant improvements in the system's ability to identify anomalies accurately while minimizing false alarms. This research advances HVAC system security by providing a more robust and adaptive anomaly detection solution. Integrating Gradient Boosting Regressor into the cybersecurity framework of HVAC systems offers improved protection against cyber threats, thereby enhancing the resilience and reliability of critical infrastructures.