Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
BACKGROUNDIn agricultural pest management, especially in combatting the invasive red imported fire ant (RIFA, Solenopsis invicta), significant challenges emerge due to the constraints of solely depending on chemical insecticides or entomopathogenic nematodes (EPNs). The utilization of chemical insecticides carries environmental and ecological hazards, whereas EPNs, when applied independently, might not offer the immediate effectiveness necessary for adequate RIFA suppression. Acknowledging these hurdles, our study investigates a synergistic method that integrates EPNs with chemical insecticides, aiming to fulfill the urgent demand for more efficient and environmentally friendly pest control solutions.RESULTSOur evaluation focused on the interaction between the highly pathogenic Steinernema riobrave 7–12 EPN strain and prevalent insecticides, specifically beta‐cypermethrin and a mixture of bifenthrin and clothianidin, applied at highly diluted recommended concentrations. The findings revealed a notable increase in RIFA mortality rates when EPNs and these insecticides were used together, outperforming the results achieved with each method individually. Remarkably, this enhanced efficacy was especially evident at lower concentrations of the bifenthrin–clothianidin mixture, indicating a valuable approach to minimizing reliance on chemical insecticides in agriculture. Furthermore, the high survival rates of EPNs alongside the tested insecticides indicate their compatibility and potential for sustained use in integrated pest management programs.CONCLUSIONOur research underscores the effectiveness of merging EPNs with chemical insecticides as a powerful and sustainable strategy for RIFA management. This combined approach not only meets the immediate challenges of pest control in agricultural settings but also supports wider environmental objectives by reducing the dependency on chemical insecticides.This article is protected by copyright. All rights reserved.
BACKGROUNDIn agricultural pest management, especially in combatting the invasive red imported fire ant (RIFA, Solenopsis invicta), significant challenges emerge due to the constraints of solely depending on chemical insecticides or entomopathogenic nematodes (EPNs). The utilization of chemical insecticides carries environmental and ecological hazards, whereas EPNs, when applied independently, might not offer the immediate effectiveness necessary for adequate RIFA suppression. Acknowledging these hurdles, our study investigates a synergistic method that integrates EPNs with chemical insecticides, aiming to fulfill the urgent demand for more efficient and environmentally friendly pest control solutions.RESULTSOur evaluation focused on the interaction between the highly pathogenic Steinernema riobrave 7–12 EPN strain and prevalent insecticides, specifically beta‐cypermethrin and a mixture of bifenthrin and clothianidin, applied at highly diluted recommended concentrations. The findings revealed a notable increase in RIFA mortality rates when EPNs and these insecticides were used together, outperforming the results achieved with each method individually. Remarkably, this enhanced efficacy was especially evident at lower concentrations of the bifenthrin–clothianidin mixture, indicating a valuable approach to minimizing reliance on chemical insecticides in agriculture. Furthermore, the high survival rates of EPNs alongside the tested insecticides indicate their compatibility and potential for sustained use in integrated pest management programs.CONCLUSIONOur research underscores the effectiveness of merging EPNs with chemical insecticides as a powerful and sustainable strategy for RIFA management. This combined approach not only meets the immediate challenges of pest control in agricultural settings but also supports wider environmental objectives by reducing the dependency on chemical insecticides.This article is protected by copyright. All rights reserved.
Soil microorganisms play a crucial role in suppressing soil-borne diseases. Although the composition of microbial communities in healthy versus diseased soils is somewhat understood, the interplay between microbial interactions and disease incidence remains unclear. This study used 16S rRNA and fungal internal transcribed spacer (ITS) sequencing to investigate the bacterial and fungal community composition in three soil types: forest soil (Z), soil from healthy banana plantations (H), and soil from diseased banana plantations (D). Principal coordinate analysis revealed significant differences among the bacterial and fungal community structures of the three soil types. Compared with those in forest soil, bacterial and fungal diversities significantly decreased in diseased banana soil. Key microorganisms, including the bacteria Chloroflexi and Pseudonocardia and the fungi Mortierellomycota and Moesziomyces, were significantly increased in soil from diseased banana plantations. Redundancy analysis revealed that total nitrogen and available phosphorus were the primary drivers of the soil microbial community structure. The neutral community model posited that the bacterial community assembly in banana plantations is predominantly governed by stochastic processes, whereas the fungal community assembly in banana plantations is primarily driven by deterministic processes. Furthermore, co-occurrence network analysis revealed that the proportion of positive edges in the fungal network of soil from diseased banana plantations was 5.92 times lower than that in soil from healthy banana plantations, and its fungal network structure was sparse and simple. In conclusion, reduced interactions within the fungal network were significantly linked to the epidemiology of Fusarium wilt. These findings underscore the critical role of soil fungal communities in modulating pathogens. IMPORTANCE Soil microorganisms are pivotal in mitigating soil-borne diseases. The intricate mechanisms underlying the interactions among microbes and their impact on disease occurrence remain enigmatic. This study underscores that a reduction in fungal network interactions correlates with the incidence of soil-borne Fusarium wilt.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.