Various types of lignocellulosic biomass wastes (LBW) had been successfully converted into cello-oligomers with different chain lengths via a controlled depolymerization process. Cellulose fibres isolated from LBW samples were dissolved with room temperature ionic liquid (RTIL) in the presence of an acid catalyst, Amberlyst 15 DRY. The effects of reaction time on the degree of polymerization and yields of water-insoluble cello-oligomers formed were studied. Besides, the yields of water-soluble cello-oligomers such as glucose and xylose were also determined. The depolymerization of cellulose fibres isolated from LBW was observed to follow both second-order and pseudo-second order kinetics under specific conditions. As such, cello-oligomers of controllable chain lengths could be obtained by adjusting the duration of depolymerization process under optimized conditions.