Iron powders with two different particle size distributions were compacted by high velocity compaction. The influences of particle size distribution and impact velocity on green properties, including green density, springback, tensile strength and bending strength etc., were studied with scanning electron microscopy (SEM) and a computer controlled universal testing machine. The results show that the particle size distribution and the impact velocity strongly affect its properties. Wider size distribution results in green compact with higher density and better strength. Furthermore, springback of compacts is lower produced by the powder with wider size distribution, especially for radial springback. As impact velocity increases, its green density and green strength gradually increases, but the increasing rate of density decreases gradually. No special relation is found between springback and impact velocity. In addition, the axial springback and the bending strength are higher than the radial springback and the tensile strength, respectively.