This paper assesses the impact of utilizing statistically defined residual stress fields from cold expansion (Cx) in linear elastic, multi‐point fracture mechanics analyses using the spatial analysis of residual stress (SpARS) methodology. There is significant value and interest in leveraging the increased fatigue life afforded by Cx, but it is imperative to quantify the variability of the residual stress to understand the expected variability in benefit due to Cx. Comparisons of the predicted fatigue lives from SpARS‐produced statistical residual stress fields are made to fatigue test data. Results demonstrated that the less compressive 95% upper bound from the mean residual stress would be a reasonable strategy as it supplies a compromise between safety and inherent material and process variability while still producing a sizable improvement in predicted fatigue life. In this study, using SpARS to incorporate statistically representative residual stress fields in fatigue crack growth analyses demonstrates a methodology to aircraft structural engineers for improved fleet management and allow increased aircraft availability through fewer inspections.