Low-concentrated colloidal chitosan systems undergoing a thermally induced sol–gel phase transition are willingly studied due to their potential use as minimally invasive injectable scaffolds. Nevertheless, instrumental injectability tests to determine their clinical utility are rarely performed. The aim of this work was to analyze the flow phenomenon of thermosensitive chitosan systems with the addition of disodium β-glycerophosphate through hypodermic needles. Injectability tests were performed using a texture analyzer and hypodermic needles in the sizes 14G–25G. The rheological properties were determined by the flow curve, three-interval thixotropy test (3ITT), and Cox–Merz rule. It was found that reducing the needle diameter and increasing its length and the crosshead speed increased the injection forces. It was claimed that under the considered flow conditions, there was no need to take into account the viscoelastic properties of the medium, and the model used to predict the injection force, based solely on the shear-thinning nature of the experimental material, showed very good agreement with the experimental data in the shear rate range of 200–55,000 s−1. It was observed that the increase in the shear rate value led to macroscopic structural changes of the chitosan sol caused by the disentangling and ordering of the polysaccharide chains along the shear field.