Background
There is a continual push for developing accurate predictors for Intensive Care Unit (ICU) admitted heart failure (HF) patients and in-hospital mortality.
Objective
The study aimed to utilize transparent machine learning and create hierarchical clustering of key predictors based off of model importance statistics gain, cover, and frequency.
Methods
Inclusion criteria of complete patient information for in-hospital mortality in the ICU with HF from the MIMIC-III database were randomly divided into a training (n = 941, 80%) and test (n = 235, 20%). A grid search was set to find hyperparameters. Machine Learning with XGBoost were used to predict mortality followed by feature importance with Shapely Additive Explanations (SHAP) and hierarchical clustering of model metrics with a dendrogram and heat map.
Results
Of the 1,176 heart failure ICU patients that met inclusion criteria for the study, 558 (47.5%) were males. The mean age was 74.05 (SD = 12.85). XGBoost model had an area under the receiver operator curve of 0.662. The highest overall SHAP explanations were urine output, leukocytes, bicarbonate, and platelets. Average urine output was 1899.28 (SD = 1272.36) mL/day with the hospital mortality group having 1345.97 (SD = 1136.58) mL/day and the group without hospital mortality having 1986.91 (SD = 1271.16) mL/day. The average leukocyte count in the cohort was 10.72 (SD = 5.23) cells per microliter. For the hospital mortality group the leukocyte count was 13.47 (SD = 7.42) cells per microliter and for the group without hospital mortality the leukocyte count was 10.28 (SD = 4.66) cells per microliter. The average bicarbonate value was 26.91 (SD = 5.17) mEq/L. Amongst the group with hospital mortality the average bicarbonate value was 24.00 (SD = 5.42) mEq/L. Amongst the group without hospital mortality the average bicarbonate value was 27.37 (SD = 4.98) mEq/L. The average platelet value was 241.52 platelets per microliter. For the group with hospital mortality the average platelet value was 216.21 platelets per microliter. For the group without hospital mortality the average platelet value was 245.47 platelets per microliter. Cluster 1 of the dendrogram grouped the temperature, platelets, urine output, Saturation of partial pressure of Oxygen (SPO2), Leukocyte count, lymphocyte count, bicarbonate, anion gap, respiratory rate, PCO2, BMI, and age as most similar in having the highest aggregate gain, cover, and frequency metrics.
Conclusion
Machine Learning models that incorporate dendrograms and heat maps can offer additional summaries of model statistics in differentiating factors between in patient ICU mortality in heart failure patients.