Historically, one of the earliest motivations for the development of K-theory was the need to put on a firm algebraic foundation a number of invariants or obstructions that appear in topology. The primary purpose of this chapter is to examine many of these K-theoretic invariants, not from a historical point of view, but rather a posteriori, now that K-theory is a mature subject. There are two reasons why this may be a useful exercise. First, it may help to show K-theorists brought up in the "algebraic school" how their subject is related to topology. And secondly, clarifying the relationship between Ktheory and topology may help topologists to extract from the wide body of K-theoretic literature the things they need to know to solve geometric problems. For purposes of this article, "geometric topology" will mean the study of the topology of manifolds and manifold-like spaces, of simplicial and CWcomplexes, and of automorphisms of such objects. As such, it is a vast subject, and so it will be impossible to survey everything that might relate this subject to K-theory. I instead hope to hit enough of the interesting areas to give the reader a bit of a feel for the subject, and the desire to go off and explore more of the literature. Unless stated otherwise, all topological spaces will be assumed to be Hausdorff and compactly generated. (A Hausdorff space X is compactly generated if a subset C is closed if and only if C ∩K is closed, or equivalently, compact, for all compact subsets K of X. Sometimes compactly generated spaces are called k-spaces. The k stands both for the German Kompakt and for Kelley, who pointed out the advantages of these spaces.) This eliminates certain pathologies that cause trouble for the foundations of homotopy theory. "Map" will always mean "continuous map." A map f : X → Y is called a weak equivalence if its image meets every path component of Y and if f * : π n (X, x) → π n (Y, f (x)) is an isomorphism for every x ∈ X.