The H8 and S1 reservoirs in the lower Shihezi Formation and Shanxi Formation of the central block in the Sulige Gas Field are typical fluvial tight sandstone reservoirs. Due to frequent river channel migrations during deposition, the reservoirs exhibit complex spatial structures with developed intra-sand mudstone interlayers. As the field has entered the middle and late stages of development, the distribution of remaining gas is intricately controlled by these interlayers, necessitating research on their distribution to understand the remaining gas patterns and types for effective extraction enhancement. However, the thinness of interlayers presents a challenge for precise prediction. Addressing this, this study delineates different interlayer types and their origins, applies reservoir architecture theory, and utilizes bounding surfaces characterization, planar and sectional distribution studies, unit scale analysis, horizontal well data, and quantitative characterization methods to investigate the internal reservoir architecture bounding surfaces. The study finely portrays the interlayer distribution, analyzes the control of reservoir architecture bounding surfaces on remaining gas, and establishes a multi-tiered reservoir architecture model in the study area. Numerical simulation of the gas reservoir clarifies the types of remaining gas enrichment. This study also identifies and quantitatively characterizes the 5–3 level architecture bounding surfaces within the sandbody, categorizing the remaining gas into bounding surfaces-controlled, well-network uncontrolled, and single-layer unperforated types, proposing targeted enhancement measures for each type. Based on the findings, four vertical wells and three horizontal wells were deployed, improving the well network density to three wells per square kilometer. The first completed horizontal well encountered an effective drilling rate of 61.7%, marking significant implications for the exploitation and recovery enhancement of similar tight sandstone gas reservoirs.