Climate change and human activity threaten sea turtle nesting beaches through increased flooding and erosion. Understanding the environmental characteristics that enable nesting can aid to preserve and expand these habitats. While numerous local studies exist, a comprehensive global analysis of environmental influences on the distribution of sea turtle nesting habitats remains largely unexplored. Here, we relate global sea turtle nesting distribution to 22 coastal indicators, spanning hydrodynamic, atmospheric, geophysical, habitat, and human processes. Using state-of-the-art global datasets and a novel 50-km-resolution hexagonal coastline grid (Coastgons), we employ machine learning to identify spatially homogeneous patterns in the indicators and correlate these to the occurrence of nesting grounds. Our findings suggest sea surface temperature, tidal range, extreme surges, and proximity to coral and seagrass habitats significantly influence global nesting distribution. Low tidal ranges and low extreme surges appear to be particularly favorable for individual species, likely due to reduced nest flooding. Other indicators, previously reported as influential (e.g., precipitation and wind speed), were not as important in our global-scale analysis. Finally, we identify new, potentially suitable nesting regions for each species, showing that on average 23% of global coastal regions between -37◦ and 48◦ latitude could be suitable for nesting, while only 6% is currently used by turtles. Our results help identify suitable nesting conditions, quantify potential hazards to global nesting habitats, and lay a foundation for nature-based solutions to preserve and potentially expand these habitats.