Today, consumer demand for food safety, especially in fried foods, is increasing. In the first place, it is demanded to reduce the amount of food toxins, in particular toxins resulting from the thermal process such as acrylamide. This study aimed to examine the effect of different technological treatments on the optimisation of minimum acrylamide and maximum colour properties by applying the Taguchi approach in the production of chips. In this study, design of experiments, signal-to-noise (S/N) ratio, analysis of variance, and regression analysis methods were used to optimise the minimum acrylamide and redness (a*), maximum brightness (L*), and yellowness (b*) values. The optimal parameters for acrylamide were found to be 90 °C slice washing temperature, 175 °C frying temperature, and 175 s frying time. The optimal parameters for colour analysis were determined as 30 °C slice washing temperature, 175 °C frying temperature, and 175 s frying time. Analysis of variance showed that frying temperature and time had a significant (p < 0.05) effect on the results. It was determined that a decrease in frying temperature and time led to a decrease in the amount of acrylamide and redness and an increase in brightness and yellowness. According to the results of the analysis of variance, the most effective technological treatments were frying temperature with effect rates of 37.45% and 60.26% for acrylamide and L* values, respectively, and frying time with effect rates of 40.50% and 44.19% for a* and b* values, respectively. As a result of the study, through the Taguchi method, while quality features in chips were preserved, the amount of acrylamide was reduced.