Level crossing is an element of the transport infrastructure of a particular type. This is where streams of regulated and unregulated traffic interact. Vehicles of regulated, rail traffic affect on unregulated, road traffic vehicles. This process takes place over a relatively small area. But the associated processes are concerned with long distances and medium speeds. Importantly, the impact may be mutual (mainly on level crossing cat. D). Consequently, a number of diverse problems can be observed at level crossings as well as in their direct vicinity. One of them is very particular, since its intensity and scale are significantly higher compared to other points of the transport network. This is a problem of how the sight organs of a rail vehicle driver function. At level crossings, a rail vehicle driver is incapable of registering all events connected with moving objects in a horizontal plane of the field of view (often, dozens or hundreds of vehicles and pedestrians, rail vehicles, signs etc.). Especially in agglomeration areas, near the railway stations, people may violently trespass into the tracks. Before reaching a level crossing, the driver’s sight organs perform specific movements of variable dynamics, having a direct impact on the traffic safety. Given the context in question, the article discusses the methods used to measure the characteristics of the train driver’s sight organs by means of eye tracking devices. The measured characteristics are: saccadic movements, fixation point locations, blinking etc. The relevant studies were supported by using additional equipment and techniques, including visual and vibroacoustic ones. These studies have been illustrated with reference to the measurements performed in different sections of the railway network. The aim of the research was to analyse the behaviour of drivers of traction vehicles. The research results have been discussed in quantitative terms, thus introducing several new descriptive characteristics. The data thus obtained, e.g. concerning the functions of the driver’s sight organs, have been analysed using numerical data set characteristics. With regard to the context this article the authors also conduct research addresses measurements of the characteristics of the road vehicle driver’s sight organs performed by means of eye tracking devices.