Proceedings of the Proceedings of the 7th Mathematics, Science, and Computer Science Education International Seminar, MSCEIS 20 2020
DOI: 10.4108/eai.12-10-2019.2296538
|View full text |Cite
|
Sign up to set email alerts
|

The Artificial Neural Networks (ANN) for Batik Detection Based on Textural Features

Abstract: This study aims to utilize artificial neural networks to distinguish batik motifs and non-batik fabric motifs. Several important steps are needed, namely the process of acquiring batik and non-batik images, pre-transforming batik and non-batik images to gray scale forms, texture feature extraction in gray scale images and detection of motifs using networks artificial nerve. Image acquisition is done by collecting batik and not batik images from several different motifs. Processing data sets is divided into 70%… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
2

Citation Types

0
10
0
2

Year Published

2021
2021
2023
2023

Publication Types

Select...
4
1

Relationship

2
3

Authors

Journals

citations
Cited by 5 publications
(12 citation statements)
references
References 6 publications
0
10
0
2
Order By: Relevance
“…Sementara itu, fitur bentuk menggunakan moment invariant [10], deteksi tepi dengan operator Canny [8], [11], Sobel [12], [13], Prewitt dan Gaussian [14], sedangkan fitur tekstur menggunakan GLCM [15]- [20], Local Binary Pattern (LBP) [21], HMTSeg [22], dan Filter Gabor [3], [23]. Pada proses akhir yaitu klasifikasi, metode yang umum digunakan dalam pengenalan kain tradisional adalah K-nearest neighbor (KNN) [8], [9], [18], [20], [24], [25], probability neural network (PNN) [3], jaringan syaraf tiruan (JST) [16], [26], support vector machine (SVM) [5], Naive Bayes [7], dan learning vector quantization [27].…”
Section: Pendahuluanunclassified
See 1 more Smart Citation
“…Sementara itu, fitur bentuk menggunakan moment invariant [10], deteksi tepi dengan operator Canny [8], [11], Sobel [12], [13], Prewitt dan Gaussian [14], sedangkan fitur tekstur menggunakan GLCM [15]- [20], Local Binary Pattern (LBP) [21], HMTSeg [22], dan Filter Gabor [3], [23]. Pada proses akhir yaitu klasifikasi, metode yang umum digunakan dalam pengenalan kain tradisional adalah K-nearest neighbor (KNN) [8], [9], [18], [20], [24], [25], probability neural network (PNN) [3], jaringan syaraf tiruan (JST) [16], [26], support vector machine (SVM) [5], Naive Bayes [7], dan learning vector quantization [27].…”
Section: Pendahuluanunclassified
“…Model JST yang digunakan dalam penelitian ini adalah algoritma pembelajaran backpropagation dengan pelatihan scaled conjugate gradient (trainscg) dan metode pelatihan Lavenberg-Marquardt (trainlm). Hasil yang diperoleh untuk akurasi dengan metode pelatihan algotirma scaled conjugate gradient (trainscg) lebih tinggi dengan nilai akurasi sebesar 84.12%, dibandingkan dengan metode algoritma Lavenberg-Marquardt (trainlm) sebesar 86.11% [26].…”
Section: Pendahuluanunclassified
“…Indonesia has the traditional fabric recognized as one of the country's cultural heritage in the form of batik and sarong fabric. Batik has various patterns and motifs which derive from several areas, such as Java [10,11], central Sulawesi [9], and Madura [12]. Samarinda is one of the cities in East Kalimantan-Indonesia's largest provincehas a distinctive sarong that residents typically wear for formal or religious occasions.…”
Section: Introductionmentioning
confidence: 99%
“…Generally, those works involved three main processes: preprocessing, feature extraction, and classification [8,9,14]. Pre-processing was commonly performed by resizing the original image into a square form [8,9], converting the RGB image into grayscale [11], histogram equalization [15], edge detection [13], and Gaussian filter [3].…”
Section: Introductionmentioning
confidence: 99%
See 1 more Smart Citation