Studies have reported overexpression of NAT1 gene for xenobiotic metabolizing arylamine N-acetyltransferase type 1 in estrogen receptor positive breast tumors, and this association has been linked to patient chemoresistance and response to tamoxifen. We probed the expression of NAT1, using quantitative reverse transcription PCR to screen clinically characterized breast cancer tissue cDNA arrays. Primers detecting all NAT1 alternative transcripts were used, and the protocol and results are reported according to consensus guidelines. The clinical information about 166 tumor samples screened is provided, including tumor stage, estrogen and progesterone receptor status and HER2 expression. NAT1 was found to be significantly (P < 0.001) upregulated in hormone receptor positive vs. negative tumors. No correlation was apparent between NAT1 and tumor stage or HER2 expression. Our findings demonstrate a strong correlation between the expression of NAT1 and steroid hormone receptors in breast tumors, supporting its possible utility as a pharmacogenetic biomarker or drug target. Of the two polymorphic NAT genes, NAT1 is the one primarily expressed in breast tissue, and is subjected to regulation by two differential promoters and more than one polyadenylation signal. Hormonal factors may enhance NAT1 gene expression at the transcriptional or epigenetic level, and tamoxifen has additionally been shown to inhibit NAT1 enzymatic activity. The outcome of tamoxifen treatment is also more favorable in patients with NAT1 overexpressing tumors. The study adds to the growing body of evidence implicating NAT1 in breast cancer and its pharmacological treatment.