The orthogonal expansion in time-domain method is a new kind of unconditionally stable finite-difference time-domain (FDTD) method for solving the Maxwell equation efficiently. Generally, it can be implemented by two schemes: marching-on-in-order and paralleling-in-order, which, respectively, use weighted Laguerre polynomials and associated Hermite functions as temporal expansions and testing functions. This chapter summarized paralleling-in-order-based FDTD method using associated Hermite functions and Legendre polynomials. And a comparison from theoretical analysis to numerical examples is shown. The LD integral transfer matrix can be considered as a "dual" transformation for AH differential matrix, which gives a possible way to find more potential orthogonal basis function to implement a paralleling-in-order scheme. In addition, the differences with these two orthogonal functions are also analyzed. From the numerical results, we can see their agreements in some general cases while differing in some cases such as shielding analysis with the long-time response requirement.