Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Background Hip osteoarthritis patients display higher levels of fatty infiltration (FI) in the gluteus minimus (GM) compared to other hip muscles. We investigated specific histological factors such as fiber type composition and collagen deposition, and functional outcomes like muscle strength and activation associated with FI in these patients. Methods In twelve men (67 ± 6 y) undergoing total hip replacement (THR), hip and knee muscle strength and activation (electromyography, EMG) were assessed bilaterally. Magnetic resonance imaging (MRI) was used to compare the relative FI area and muscle cross sectional area (CSA) of the GM, rectus femoris (RF), tensor fascia latae (TFL) and vastus lateralis (VL). Adipocyte content, fiber type composition, grouping, fiber size, centrally nucleated fiber frequency, collagen deposition, satellite cell density and capillarization were assessed in intraoperative biopsies of the four muscles. Differences between GM and other muscles were assessed with repeated-measures one-way ANOVA followed by Dunnett’s post-hoc test. Pearson coefficients were calculated for the correlations between FI measurements and the other histological and functional parameters. Results Strength was lower in the affected limb. Knee extensor weakness was accompanied by lower VL muscle activation. Muscle CSA and FI did not differ between sides. In the affected limb, GM displayed larger relative FI area (MRI) compared to RF and VL. Biopsy adipocyte content was higher in GM than RF and TFL. Compared to the other hip muscles, GM displayed higher type 1 fiber content while its type 2X fiber content was lower. Fiber grouping levels were higher in GM than the other muscles. Collagen content was higher in GM than TFL and VL. FI in GM was associated with type 1 (r = 0.43) and type 2X (r = -0.34) fiber content, fiber grouping (r = 0.39), and collagen deposition (r = 0.37). FI in VL was negatively associated with maximal knee extension strength (r = -0.65). Conclusions In patients undergoing THR, the higher FI levels of GM compared to other hip muscles were associated with fiber type composition and grouping, and with higher collagen deposition. Experimental studies exploring these associations could potentially uncover new targets for the treatment of intramuscular FI and related impairments in muscle function. Trial registration KEK number: 2016–01852, date of registration: 12-4-2017.
Background Hip osteoarthritis patients display higher levels of fatty infiltration (FI) in the gluteus minimus (GM) compared to other hip muscles. We investigated specific histological factors such as fiber type composition and collagen deposition, and functional outcomes like muscle strength and activation associated with FI in these patients. Methods In twelve men (67 ± 6 y) undergoing total hip replacement (THR), hip and knee muscle strength and activation (electromyography, EMG) were assessed bilaterally. Magnetic resonance imaging (MRI) was used to compare the relative FI area and muscle cross sectional area (CSA) of the GM, rectus femoris (RF), tensor fascia latae (TFL) and vastus lateralis (VL). Adipocyte content, fiber type composition, grouping, fiber size, centrally nucleated fiber frequency, collagen deposition, satellite cell density and capillarization were assessed in intraoperative biopsies of the four muscles. Differences between GM and other muscles were assessed with repeated-measures one-way ANOVA followed by Dunnett’s post-hoc test. Pearson coefficients were calculated for the correlations between FI measurements and the other histological and functional parameters. Results Strength was lower in the affected limb. Knee extensor weakness was accompanied by lower VL muscle activation. Muscle CSA and FI did not differ between sides. In the affected limb, GM displayed larger relative FI area (MRI) compared to RF and VL. Biopsy adipocyte content was higher in GM than RF and TFL. Compared to the other hip muscles, GM displayed higher type 1 fiber content while its type 2X fiber content was lower. Fiber grouping levels were higher in GM than the other muscles. Collagen content was higher in GM than TFL and VL. FI in GM was associated with type 1 (r = 0.43) and type 2X (r = -0.34) fiber content, fiber grouping (r = 0.39), and collagen deposition (r = 0.37). FI in VL was negatively associated with maximal knee extension strength (r = -0.65). Conclusions In patients undergoing THR, the higher FI levels of GM compared to other hip muscles were associated with fiber type composition and grouping, and with higher collagen deposition. Experimental studies exploring these associations could potentially uncover new targets for the treatment of intramuscular FI and related impairments in muscle function. Trial registration KEK number: 2016–01852, date of registration: 12-4-2017.
Disorders affecting the neurological and musculoskeletal systems represent international health priorities. A significant impediment to progress in trials of new therapies is the absence of responsive, objective, and valid outcome measures sensitive to early disease changes. A key finding in individuals with neuromuscular and musculoskeletal disorders is the compositional changes to muscles, evinced by the expression of fatty infiltrates. Quantification of skeletal muscle composition by MRI has emerged as a sensitive marker for the severity of these disorders; however, little is known about the composition of healthy muscles across the lifespan. Knowledge of what is ‘typical’ age-related muscle composition is essential to accurately identify and evaluate what is ‘atypical’. This innovative project, known as the MuscleMap, will achieve the first important steps towards establishing a world-first, normative reference MRI dataset of skeletal muscle composition with the potential to provide valuable insights into various diseases and disorders, ultimately improving patient care and advancing research in the field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.