BACKGROUND/OBJECTIVES
The high consumption of purine-rich meat is associated with hyperuricemia. However, there is limited evidence linking the consumption of red and processed meat to the genetic risk of hyperuricemia. We investigated the relationship between various combinations of red and processed meat consumption and the polygenic risk scores (PRSs) and the incidence of hyperuricemia in middle-aged Koreans.
SUBJECTS/METHODS
We analyzed the data from 44,053 participants aged ≥40 years sourced from the Health Examinees (HEXA) cohort of the Korean Genome and Epidemiology Study (KoGES). Information regarding red and processed meat intake was obtained using a semiquantitative food frequency questionnaire (SQ-FFQ). We identified 69 independent single-nucleotide polymorphisms (SNPs) at uric acid-related loci using genome-wide association studies (GWASs) and clumping analyses. The individual PRS, which is the weighted sum of the effect size of each allele at the SNP, was calculated. We used multivariable Cox proportional hazards models adjusted for covariates to determine the relationship between red and processed meat intake and the PRS in the incidence of hyperuricemia.
RESULTS
During an average follow-up period of 5 years, 2,556 patients with hyperuricemia were identified. For both men and women, the group with the highest red and processed meat intake and the highest PRS was positively associated with the development of hyperuricemia when compared with the group with the lowest red and processed meat intake and the lowest PRS (hazard ratio [HR], 2.72; 95% confidence interval [CI], 2.10–3.53;
P
< 0.0001; HR, 3.28; 95% CI, 2.45–4.40;
P
< 0.0001).
CONCLUSION
Individuals at a high genetic risk for uric acid levels should moderate their consumption of red and processed meat to prevent hyperuricemia.