Psychiatric diagnosis is moving away from symptom-based classification and towards multi-dimensional, biologically-based characterization, or biotyping. We previously identified three biotypes of chemotherapy-related cognitive impairment based on functional brain connectivity. In this follow-up study, we evaluated additional factors to help explain biotype expression: neurofunctional stability, brain age, apolipoprotein (APOE) genotype, and psychoneurologic symptoms. We also compared the discriminative ability of a traditional, symptom-based cognitive impairment definition with that of biotypes. We found significant differences in cortical brain age (F = 10.86, p < 0.001), neurofunctional stability (F = 2.85, p = 0.040), APOE e4 genotype (X2 = 7.89, p = 0.048), and psychoneurological symptoms (Pillai = 0.339, p < 0.001) across the three biotypes. The more resilient (Biotype 2) demonstrated significantly higher neurofunctional stability compared to the other biotypes. Symptom-based classification of cognitive impairment did not differentiate biologic or other behavioral variables, suggesting that traditional categorization of cancer-related cognitive effects may miss important characteristics which could inform targeted treatment strategies. Additionally, biotyping, but not symptom-typing, was able to distinguish survivors with cognitive versus psychological effects. Our results suggest that Biotype 1 survivors might benefit from first addressing symptoms of anxiety and fatigue, Biotype 3 might benefit from a treatment plan which includes sleep hygiene, and Biotype 2 might benefit most from cognitive skills training or rehabilitation. Future research should include additional demographic and clinical information to further investigate biotype expression related to risk and resilience and examine integration of more clinically feasible imaging approaches.