In acute promyelocytic leukemia (APL), differentiation therapy with all-trans retinoic acid (ATRA) and/or arsenic trioxide can induce a differentiation syndrome (DS) with massive pulmonary infiltration of differentiating leukemic cells. Because chemokines are implicated in migration and extravasation of leukemic cells, chemokines might play a role in DS. ATRA stimulation of the APL cell line NB4 induced expression of multiple CC-chemokines (CCLs) and their receptors (> 19-fold), resulting in increased chemokine levels and chemotaxis. Induction of CCL2 and CCL24 was directly mediated by ligand-activated retinoic acid receptors. In primary leukemia cells derived from APL patients at diagnosis, ATRA induced chemokine production as well. Furthermore, in plasma of an APL patient with DS, we observed chemokine induction, suggesting that chemokines might be important in DS. Dexamethasone, which efficiently reduces pulmonary chemokine production, did not inhibit chemokine induction in APL cells. Finally, chemokine production was also induced by arsenic trioxide as single agent or in combination with ATRA. We propose that differentiation therapy may induce chemokine production in the lung and in APL cells, which both trigger migration of leukemic cells. Because dexamethasone does not efficiently reduce leukemic chemokine production, pulmonary infiltration of leukemic cells may induce an uncontrollable hyperinflammatory reaction in the lung.
IntroductionAcute promyelocytic leukemia (APL) is characterized by a specific t(15;17) chromosomal translocation, which fuses the promyelocytic leukemia (PML) gene on chromosome 15 to the retinoic acid receptor-␣ (RARA) gene on chromosome 17. This translocation results in blockage of terminal granulocytic differentiation at the promyelocytic stage. 1,2 Treatment with high dosage of the RARA ligand all-trans retinoic acid (ATRA) relieves this blockage, resulting in terminal differentiation of the APL blasts. Presently, standard therapy for patients with newly diagnosed APL consists of a combination of ATRA and anthracycline-based chemotherapy, which results in the induction of a complete remission in more than 90% of the patients and a 5-year overall survival rate of more than 80%. [3][4][5][6][7][8][9][10][11] In addition, arsenic trioxide (ATO) treatment has been shown to be highly effective in relapsed APL patients and has also been used successfully as a single agent or in combination with ATRA in newly diagnosed APL patients. [12][13][14][15][16][17][18][19][20][21] Despite the high cure rates, induction mortality is a still a problem in APL. In a large series of 732 APL patients who received ATRA plus idarubicin, induction mortality was 9%. The most common causes of death were hemorrhage, infection, and the differentiation syndrome (DS), formerly known as retinoic acid syndrome. 22 DS is reported in 2.5% to 31% of the APL patients who receive induction therapy with ATRA and/or ATO. [5][6][7]10,14,16,19,20,[23][24][25][26][27][28][29][30] DS is not observed during consolidation o...