We demonstrate here that astrocytes in the striatum interact with striatal dopamine in bidirectional signaling with dopamine release actively driving surges in astrocytic Ca++, which in turn modulate and reduce subsequent dopamine release. These Ca++ surges accurately predict behavioral state changes from task-engaged to task-disengaged states, but fail to predict detailed action parameters. We propose that interactions between striatal astrocytes and dopamine are strong candidates to modulate nigro-striato-nigral loop function underlying on-going behavioral state dynamics.