Citation for published version (APA):Long, X., Fonseca, P., Haakma, R., Foussier, J., & Aarts, R. M. (2014). Automatic detection of overnight deep sleep based on heart rate variability : a preliminary study. In Proceedings of the 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC'14), 26-30 August 2014, Chicago, Illinois (pp. 50-53 Please check the document version of this publication:• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.• The final author version and the galley proof are versions of the publication after peer review.• The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication
General rightsCopyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.• You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal.If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement: www.tue.nl/taverne
Take down policyIf you believe that this document breaches copyright please contact us at:openaccess@tue.nl providing details and we will investigate your claim. Abstract-This preliminary study investigated the use of cardiac information or more specifically, heart rate variability (HRV), for automatic deep sleep detection throughout the night. The HRV data can be derived from cardiac signals, which were obtained from polysomnography (PSG) recordings. In total 42 features were extracted from the HRV data of 15 single-night PSG recordings (from 15 healthy subjects) for each 30-s epoch, used to perform epoch-by-epoch classification of deep sleep and non-deep sleep (including wake state and all the other sleep stages except deep sleep). To reduce variation of cardiac physiology between subjects, we normalized each feature per subject using a simple Z-score normalization method by subtracting the mean and dividing by the standard deviation of the feature values. A correlation-based feature selection (CFS) method was employed to select informative features as well as removing feature redundancy and a linear discriminant (LD) classifier was applied for deep and non-deep sleep classification. Results show th...