In this note we prove that every weak Gibbs measure for an asymptotically additive sequences is a Gibbs measure for another asymptotically additive sequence. In particular, a weak Gibbs measure for a continuous potential is a Gibbs measure for an asymptotically additive sequence. This allows, for example, to apply recent results on dimension theory of asymptotically additive sequences to study multifractal analysis for weak Gibbs measure for continuous potentials.