Traditional search tasks have taught us much about vision and attention. Recently, several groups have begun to use multiple-target search to explore more complex and temporally extended "foraging" behaviour. Many of these new foraging tasks, however, maintain the simplified 2D displays and response demands associated with traditional, single-target visual search. In this respect, they may fail to capture important aspects of real-world search or foraging behaviour. In the current paper, we present a serious game for mobile platforms, developed in Unity3D, in which human participants play the role of an animal foraging for food in a simulated 3D environment. Game settings can be adjusted, so that, for example, custom target and distractor items can be uploaded, and task parameters, such as the number of target categories or target/distractor ratio are all easy to modify. We are also making the Unity3D project available, so that further modifications can also be made. We demonstrate how the app can be used to address specific research questions by conducting two human foraging experiments. Our results indicate that in this 3D environment, a standard feature/conjunction manipulation does not lead to a reduction in foraging runs, as it is known to do in simple, 2D foraging tasks.