The Particle Swarm Optimization (PSO) algorithm is easy to implement owing to its simple framework, and has been successfully applied to many optimization problems. However, the standard PSO easily falls into the local optimum and has weak search ability. To enhance the optimization ability of the algorithm, this paper proposes an adaptive particle swarm optimization with information interaction mechanism (APSOIIM). First, a chaotic sequence strategy was used to produce uniformly distributed particles and enhance their convergence speed at the initialization stage of the algorithm. Then, an interaction information mechanism is introduced to enhance the diversity of the population with the progress of the search, which can effectively interact with the best information of neighboring particles to maintain the balance between exploration and exploitation. Besides, the convergence was proven to verify the robustness and efficiency of the proposed APSOIIM algorithm. Finally, the proposed APSOIIM was applied to solve the CEC2014 benchmark functions and CEC2017 benchmark functions as well as famous engineering optimization problems. The experimental results show that the proposed APSOIIM has significant advantages over the compared algorithms.