2021
DOI: 10.48550/arxiv.2111.06194
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

The Augmented Lagrangian Method Can Approximately Solve Convex Optimization with Least Constraint Violation

Abstract: There are many important practical optimization problems whose feasible regions are not known to be nonempty or not, and optimizers of the objective function with the least constraint violation prefer to be found. A natural way for dealing with these problems is to extend the nonlinear optimization problem as the one optimizing the objective function over the set of points with the least constraint violation. This leads to the study of the shifted problem. This paper focuses on the constrained convex optimizat… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 15 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?