For each $$n\ge 5$$
n
≥
5
, we give an $$S_n$$
S
n
-equivariant basis for $$H_4(\overline{\mathcal {M}}_{0,n},\mathbb {Q})$$
H
4
(
M
¯
0
,
n
,
Q
)
, as well as for $$H_{2(n-5)}(\overline{\mathcal {M}}_{0,n},\mathbb {Q})$$
H
2
(
n
-
5
)
(
M
¯
0
,
n
,
Q
)
. Such a basis exists for $$H_2(\overline{\mathcal {M}}_{0,n},\mathbb {Q})$$
H
2
(
M
¯
0
,
n
,
Q
)
and for $$H_{2(n-4)}(\overline{\mathcal {M}}_{0,n},\mathbb {Q})$$
H
2
(
n
-
4
)
(
M
¯
0
,
n
,
Q
)
, but it is not known whether one exists for $$H_{2k}(\overline{\mathcal {M}}_{0,n},\mathbb {Q})$$
H
2
k
(
M
¯
0
,
n
,
Q
)
when $$3\le k\le n-6$$
3
≤
k
≤
n
-
6
.