Autophagy is an essential recycling pathway implicated in neurodegeneration either as a pro-survival or a pro-death mechanism. Its role after axonal injury is still uncertain. Axotomy of the optic nerve is a classical model of neurodegeneration. It induces retinal ganglion cell death, a process also occurring in glaucoma and other optic neuropathies. We analyzed autophagy induction and cell survival following optic nerve transection (ONT) in mice. Our results demonstrate activation of autophagy shortly after axotomy with autophagosome formation, upregulation of the autophagy regulator Atg5 and apoptotic death of 50% of the retinal ganglion cells (RGCs) after 5 days. Genetic downregulation of autophagy using knockout mice for Atg4B (another regulator of autophagy) or with specific deletion of Atg5 in retinal ganglion cells, using the Atg5 flox/flox mice reduces cell survival after ONT, whereas pharmacological induction of autophagy in vivo increases the number of surviving cells. In conclusion, our data support that autophagy has a cytoprotective role in RGCs after traumatic injury and may provide a new therapeutic strategy to ameliorate retinal diseases. Retinal ganglion cells (RGCs) are the only projecting neurons of the retina. Their axons form the optic nerve and transmit visual information to the brain. RGCs undergo apoptotic cell death in a stereotyped manner during development and in response to injury, in glaucoma and other optic neuropathies. 1 Degeneration of RGCs is often modeled by optic nerve transection (ONT), which leads to the death of these central nervous system neurons. 2 The mechanisms of RGC death are still a matter of intense investigation, and several factors including growth factor deprivation and oxidative stress have been proposed to participate in RGC degeneration in glaucoma and after ONT. 1,3 Autophagy is an intracellular catabolic pathway, which degrades cell components, toxic aggregates and damaged organelles and recycles them as basic building blocks in order to maintain cellular homeostasis. 4 Autophagy begins with the formation of a double membrane, sequestering parts of the cytosol and finally closing to form an autophagosome. This autophagosome subsequently fuses with lysosomes, thus, enabling degradation of the engulfed material. 4 Autophagy represents a cytoprotective response in many cell types 5 and its deregulation is implicated in many pathological conditions, including cancer, infectious diseases and neurodegeneration. 6 The role of autophagy in neuronal physiology is still far from being completely understood. 7,8 On one hand, autophagy is essential in preventing spontaneous neurodegeneration in mice, as deletion of the autophagy regulators Atg5, Atg7 and FIP200 in neuronal precursors induces cell death, accumulation of damaged ubiquitinated proteins and premature lethality. 9-11 Similarly, upregulation of autophagy decreases the accumulation of protein aggregates in several neurodegenerative proteinopathies. 12,13 Conversely autophagy triggers neuronal death under seve...