Abstract:The tensor rank decomposition, or canonical polyadic decomposition, is the decomposition of a tensor into a sum of rank-1 tensors. The condition number of the tensor rank decomposition measures the sensitivity of the rank-1 summands with respect to structured perturbations. Those are perturbations preserving the rank of the tensor that is decomposed. On the other hand, the angular condition number measures the perturbations of the rank-1 summands up to scaling. We show for random rank-2 tensors that the expect… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.