SUMMARYFlying birds couple a high daily energy turnover with double-digit millimolar blood glucose concentrations and insulin resistance. Unlike mammalian muscle, flight muscle predominantly relies on lipid oxidation during locomotion at high fractions of aerobic capacity, and birds outlive mammals of similar body mass by a factor of three or more. Despite these intriguing functional differences, few data are available comparing fuel oxidation and free radical production in avian and mammalian skeletal muscle mitochondria. Thus we isolated mitochondria from English sparrow pectoralis and rat mixed hindlimb muscles. Maximal O 2 consumption and net H 2 O 2 release were measured in the presence of several oxidative substrate combinations. Additionally, NADand FAD-linked electron transport chain (ETC) capacity was examined in sonicated mitochondria. Sparrow mitochondria oxidized palmitoyl-L-carnitine 1.9-fold faster than rat mitochondria and could not oxidize glycerol-3-phosphate, while both species oxidized pyruvate, glutamate and malate-aspartate shuttle substrates at similar rates. Net H 2 O 2 release was not significantly different between species and was highest when glycolytic substrates were oxidized. Sonicated sparrow mitochondria oxidized NADH and succinate over 1.8 times faster than rat mitochondria. The high ETC catalytic potential relative to matrix substrate dehydrogenases in sparrow mitochondria suggests a lower matrix redox potential is necessary to drive a given O 2 consumption rate. This may contribute to preferential reliance on lipid oxidation, which may result in lower in vivo reactive oxygen species production in birds compared with mammals.Key words: skeletal muscle mitochondria, substrate oxidation, aging, reactive oxygen species, bird.
THE JOURNAL OF EXPERIMENTAL BIOLOGY
2040to complete substrate oxidation pathways would be coupled with lower superoxide production (measured as net H 2 O 2 release) in mitochondria from English sparrow (Passer domesticus) pectoralis compared with rat (Rattus norvegicus) mixed hindlimb muscle. Thus, one purpose of the present study was to measure the maximum (state 3) mitochondrial O 2 consumption rate (J . O2 ), ETC flux capacity in sonicated mitochondria from three sites of electron entry, and ROS production by intact 'resting' (oligomycin-inhibited) mitochondria. To our knowledge, no investigation into ROS production from avian muscle mitochondria currently exists.Fuel selection by contracting muscles during locomotion differs markedly between birds and mammals. Humans and rats run at 75% of their maximum rate of O 2 uptake (V O2,max ) with a respiratory quotient (RQ) at or above 0.90 (Brooks and Donovan, 1983;Brooks and Gaesser, 1980; O'Brien et al., 1993), which reflects a general pattern of carbohydrate dependence in mammals exercising at or above moderate intensity (Roberts et al., 1996). In contrast, pigeons fly at this intensity with an RQ of 0.73 (Rothe, 1987), indicating that pigeon flight muscle supports locomotion with the almost exclusive oxidatio...