2021
DOI: 10.48550/arxiv.2101.01452
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

The Baer-Kaplansky theorem for all abelian groups and modules

Abstract: It is shown that the Baer-Kaplansky theorem can be extended to all abelian groups provided that the rings of endomorphisms of groups are replaced by trusses of endomorphisms of corresponding heaps. That is, every abelian group is determined up to isomorphism by its endomorphism truss and every isomorphism between two endomorphism trusses associated to some abelian groups G and H is induced by an isomorphism between G and H and an element from H. This correspondence is then extended to all modules over a ring b… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 15 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?