<p>Williams and later Yao, Xia and Jin discovered explicit formulas for the coefficients of the Fourier series expansions of a class of eta quotients. Williams expressed all coefficients of 126 eta quotients in terms of σ(n),σ((n/2)),σ((n/3)) and σ((n/6)) and Yao, Xia and Jin, following the method of proof of Williams, expressed only even coefficients of 104 eta quotients in terms of σ₃(n),σ₃((n/2)),σ₃((n/3)) and σ₃((n/6)).Here, we will express the even Fourier coefficients of 570 eta quotients in terms of σ₁₉(n),σ₁₉((n/2)),σ₁₉((n/3)),σ₁₉((n/4)),σ₁₉((n/6)) and σ₁₉((n/(12))).</p>