The endosymbiosis of the bacterial progenitors of mitochondrion and the chloroplast are landmark events in the evolution of life on earth. While both organelles have retained substantial proteomic and biochemical complexity, this complexity is not reflected in the content of their genomes. Instead, the organellar genomes encode fewer than 5% of genes found in close relatives of their ancestors. While some of the 95% of missing organellar genes have been discarded, many have been transferred to the host nuclear genome through a process known as endosymbiotic gene transfer. Here we demonstrate that the energy liberated or consumed by a cell as a result of endosymbiotic gene transfer is sufficient to provide a selectable advantage for retention or nuclear-transfer of organellar genes in eukaryotic cells. We further demonstrate that for realistic estimates of protein abundances, organellar protein import costs, host cell sizes, and cellular investment in organelles that it is energetically favourable to transfer the majority of organellar genes to the nuclear genome. Moreover, we show that the selective advantage of such transfers is sufficiently large to enable such events to rapidly reach fixation. Thus, endosymbiotic gene transfer can be advantageous in the absence of any additional benefit to the host cell, providing new insight into the processes that have shaped eukaryotic genome evolution.One sentence summaryThe high copy number of organellar genomes renders endosymbiotic gene transfer energetically favourable for the vast majority of organellar genes.