The development of instrumentation has allowed thermal analysis to become a widely used method not only in calorimetry but also in the field of non-isothermal kinetics that, however, provides a simplified philosophy of measurements. From the beginning, a methodology is used describing the course of reaction in a simplified temperature regime measured in an inert sample. In a most common case of DTA, the degree of reaction is subtracted from the partial areas of the as-cast peak in the unified mode of the peak linear background. Usually, the effect of thermal inertia, resulting from the reality of heat transfer and changing the peak background to a non-linear s-shaped form, is not incorporated. Therefore, the question of whether or not to include this effect of thermal inertia has become a current underlying problem of thermo-analytical kinetics. The analysis of the rectangular input heat pulses and their DTA responding fundamentally point to the need to include it thus becoming essential and not negligible. In the case of parallel evaluations, the effect of inertia can be partially compensated for each other such as in the Kissinger evaluation method. The study presents a broad overview of the thermo-analytical methodology used and points to the often-neglected literature. However, standard mainstream kinetics procedures need be fixed, and an improved solution found to account for the effect of heat transfer and dissipation, which is becoming the focus of thermal analysis methods of future and also the intention of this review.