Abstract. Bivariant (equivariant) K-theory is the standard setting for noncommutative topology. We may carry over various techniques from homotopy theory and homological algebra to this setting. Here we do this for some basic notions from homological algebra: phantom maps, exact chain complexes, projective resolutions, and derived functors. We introduce these notions and apply them to examples from bivariant K-theory.An important observation of Beligiannis is that we can approximate our category by an Abelian category in a canonical way, such that our homological concepts reduce to the corresponding ones in this Abelian category. We compute this Abelian approximation in several interesting examples, where it turns out to be very concrete and tractable.The derived functors comprise the second page of a spectral sequence that, in favourable cases, converges towards Kasparov groups and other interesting objects. This mechanism is the common basis for many different spectral sequences. Here we only discuss the very simple 1-dimensional case, where the spectral sequences reduce to short exact sequences.