Previous research showed that employing results from meta-analyses of relevant previous fMRI studies can improve the performance of voxelwise Bayesian second-level fMRI analysis. In this process, prior distributions for Bayesian analysis can be determined by information acquired from the meta-analyses. However, only image-based meta-analysis, which is not widely accessible to fMRI researchers due to the lack of shared statistical images, was tested in the previous study, so the applicability of the prior determination method proposed by the previous study might be limited. In the present study, whether determining prior distributions based on coordinate-based meta-analysis, which is widely accessible to researchers, can also improve the performance of Bayesian analysis, was examined. Three different types of coordinate-based meta-analyses, BrainMap and Ginger ALE, and NeuroQuery, were tested as information sources for prior determination. Five different datasets addressing three task conditions, i.e., working memory, speech, and face processing, were analyzed via Bayesian analysis with a meta-analysis informed prior distribution, Bayesian analysis with a default Cauchy prior adjusted for multiple comparisons, and frequentist analysis with familywise error correction. The findings from the aforementioned analyses suggest that use of coordinate-based meta-analysis also significantly enhanced performance of Bayesian analysis as did image-based meta-analysis.