2022
DOI: 10.46298/epiga.2022.8910
|View full text |Cite
|
Sign up to set email alerts
|

The behavior of essential dimension under specialization

Abstract: Let $A$ be a discrete valuation ring with generic point $\eta$ and closed point $s$. We show that in a family of torsors over $\operatorname{Spec}(A)$, the essential dimension of the torsor above $s$ is less than or equal to the essential dimension of the torsor above $\eta$. We give two applications of this result, one in mixed characteristic, the other in equal characteristic.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 8 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?