Pandemics have huge impact on all aspect of people's lives. As we have experienced during the Coronavirus pandemic, healthcare, education and the economy have been put under extreme strain. It is important therefore to be able to respond to such events fast in order to limit the damage to the society. Decisionmakers typically are advised by experts in order to inform their response strategies. One of the tools that is widely used to support evidence-based decisions is modeling and simulation. In this paper, we present a hybrid agent-based and discrete-event simulation for the Coronavirus pandemic management at regional level. Our model considers disease dynamics, population interactions and dynamic ICU bed capacity management and predicts the impact of various public health preventive measures on the population and the healthcare service.