The benefits of social insurance system prediction using a hybrid fuzzy time series method
Ahmed Abdelreheem Khalil,
Mohamed Abdelaziz Mandour,
Ahmed Ali
Abstract:Decision-making in many industries relies heavily on accurate forecasts, including the insurance sector. The Social Insurance System (SIS) in Egypt, operating under a fully funded paradigm, depends on reliable predictions to ensure effective financial planning. This research introduces a hybrid predictive model that combines fuzzy time series (FTS) Markov chains with the tree partition method (TPM) and difference transformation to forecast total pension benefits within Egypt’s SIS. A key feature of the propose… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.