Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Dimension reduction and variable selection play crucial roles in high-dimensional data analysis. Numerous existing methods have been demonstrated to attain either or both of these goals. The Minimum Average Variance Estimation (MAVE) method and its variants are effective approaches to estimate directions on the Central Mean Subspace (CMS). The Sparse Minimum Average Variance Estimation (SMAVE) combines the concepts of sufficient dimension reduction and variable selection and has been demonstrated to exhaustively estimate CMS while simultaneously selecting informative variables using LASSO without assuming any specific model or distribution on the predictor variables. In many applications, however, researchers typically possess prior knowledge for a set of predictors that is associated with response. In the presence of a known set of variables, the conditional contribution of additional predictors provides a natural evaluation of the relative importance. Based on this concept, we propose the Conditional Sparse Minimum Average Variance Estimation (CSMAVE) method. By utilizing prior information and creating a meaningful conditioning set for SMAVE, we intend to select variables that will result in a more parsimonious model and a more accurate interpretation than SMAVE. We evaluate our strategy by analyzing simulation examples and comparing them to the SMAVE method. And a real-world dataset validates the applicability and efficiency of our method.
Dimension reduction and variable selection play crucial roles in high-dimensional data analysis. Numerous existing methods have been demonstrated to attain either or both of these goals. The Minimum Average Variance Estimation (MAVE) method and its variants are effective approaches to estimate directions on the Central Mean Subspace (CMS). The Sparse Minimum Average Variance Estimation (SMAVE) combines the concepts of sufficient dimension reduction and variable selection and has been demonstrated to exhaustively estimate CMS while simultaneously selecting informative variables using LASSO without assuming any specific model or distribution on the predictor variables. In many applications, however, researchers typically possess prior knowledge for a set of predictors that is associated with response. In the presence of a known set of variables, the conditional contribution of additional predictors provides a natural evaluation of the relative importance. Based on this concept, we propose the Conditional Sparse Minimum Average Variance Estimation (CSMAVE) method. By utilizing prior information and creating a meaningful conditioning set for SMAVE, we intend to select variables that will result in a more parsimonious model and a more accurate interpretation than SMAVE. We evaluate our strategy by analyzing simulation examples and comparing them to the SMAVE method. And a real-world dataset validates the applicability and efficiency of our method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.