Colonization of land by plants was a major transition on Earth, but the developmental and genetic innovations required for this transition remain unknown. Physiological studies and the fossil record strongly suggest that the ability of the first land plants to form symbiotic associations with beneficial fungi was one of these critical innovations. In angiosperms, genes required for the perception and transduction of diffusible fungal signals for root colonization and for nutrient exchange have been characterized. However, the origin of these genes and their potential correlation with land colonization remain elusive. A comprehensive phylogenetic analysis of 259 transcriptomes and 10 green algal and basal land plant genomes, coupled with the characterization of the evolutionary path leading to the appearance of a key regulator, a calcium-and calmodulin-dependent protein kinase, showed that the symbiotic signaling pathway predated the first land plants. In contrast, downstream genes required for root colonization and their specific expression pattern probably appeared subsequent to the colonization of land. We conclude that the most recent common ancestor of extant land plants and green algae was preadapted for symbiotic associations. Subsequent improvement of this precursor stage in early land plants through rounds of gene duplication led to the acquisition of additional pathways and the ability to form a fully functional arbuscular mycorrhizal symbiosis.symbiosis | plant evolution | algae | plant-microbe interactions | phylogeny T he colonization of land by plants 450 Mya created a major transition on Earth, causing the burial of large amounts of carbon, with resultant decreases in atmospheric CO 2 leading to a dramatically altered climate. This transition provided the foundation for the majority of extant terrestrial ecosystems (1, 2). The terrestrial environment that these early plants colonized must have presented many challenges, primary among them being the acquisition of mineral nutrients. It has been suggested that the appearance of the arbuscular mycorrhizal (AM) symbiosis and other beneficial associations with fungi such as Mucoromycotina facilitated this colonization of land by improving plants' ability to capture nutrients.Based on recent phylogenetic analyses, Zygnematales, one of the paraphyletic "advanced charophytes" (i.e., Coleochaetales, Charales, and Zygnematales), has been identified as the closest green algal relative to land plants, whereas the chlorophytes diverged much earlier (Fig. 1A) (3, 4). On the other side of this transition, bryophyte lineages (i.e., liverworts, mosses, and hornworts) are considered to be the earliest diverging land plants, although their branching order remains debated (5-7). Key innovations present in bryophytes but not in advanced charophytes thus are good candidates for understanding the basis of land colonization by plants. In support of previous suppositions, one innovation that discriminates bryophytes from charophytes is the ability to develop beneficial ass...