Abstract. Scallop sarcoplasmic reticulum (SR), visualized in situ by freeze-fracture and deep-etching, is characterized by long tubes displaying crystalline arrays of Ca2+-ATPase dimer ribbons, resembling those observed in isolated SR vesicles. The orderly arrangement of the Ca2+-ATPase molecules is well preserved in muscle bundles permeabilized with saponin. Treatment with saponin, however, is not needed to isolate SR vesicles displaying a crystalline surface structure. Omission of ATP from the isolation procedure of SR vesicles does not alter the dimeric organization of the Ca2+-ATPase, although the overall appearance of the tubes seems to be affected: the edges of the vesicles are scalloped and the individual Ca:+-ATPase molecules are not clearly defined. The effect of Ca :+ on isolated scallop SR vesicles was investigated by correlating the enzymatic activity and calcium-binding properties of the Ca2+-ATPase with the surface structure of the vesicles, as revealed by electron microscopy. The dimeric organization of the membrane is preserved at Ca 2+ concentrations where the Ca 2+ binds to the high affinity sites (half-maximum saturation at pCa •7.0 with a Hill coefficient of 2.1) and the Ca 2+-ATPase is activated (half-maximum activation at pCa '~6.8 with a Hill coefficient of 1.84). Higher Ca 2+ concentrations disrupt the crystalline surface array of the SR tubes, both in the presence and absence of ATP. We discuss here whether the Ca2+-ATPase dimer identified as a structural unit of the SR membrane represents the Ca 2÷ pump in the membrane.