The main goal of this work was to analyze the impact of biochar addition and changes in air-flow rates on the intensive phase of aerobic biostabilization of undersized fraction of municipal solid waste (UFMSW). The novelty of this paper stems from the use of biochar to shorten the process and generate “well-stabilized waste”. The following six different input mixtures were tested (without biochar and with the addition of biochar at: 1.5%, 3%, 5%, 10% and 20%), at three different air-flow rates: 0.1, 0.2 and 0.4 m3·d−1·(kg org DM)−1. It was found that the biochar addition of more than 3 wt% causes water accumulation in the treated waste, but does not allow for reducing organic matter (OM) content below 35% DM, nor OMloss values below 40% (the exception is the 5 wt% addition of biochar at the air-flow rate of 0.2 m3·d−1·(kg org DM)−1). Moreover, 10 wt% and 20 wt% biochar additions to UFMSW intensify the increase in microbial abundance, which may result in higher oxygen demand or development of anaerobic zones. The most favorable biochar doses in terms of final UFMSW sanitization are 3 wt% and 5 wt%.