Numerous fast growing and highly competitive exotic crops are being selected for production of renewable bioenergy. Tolerance of poor growing conditions with minimal inputs are ideal characteristics for bioenergy feedstocks, but have attracted concern for their potential to become invasive. Miscanthus × giganteus is one of the most promising bioenergy crops in the US, but grower adoption is hindered by high establishment costs due to sterility. Newly developed fertile tetraploid M. × giganteus may streamline cultivation while reducing establishment costs. However, fertile seed dramatically increases the potential propagule pressure, and thus probability of off-site plant establishment. To empirically evaluate the invasive potential of fertile M. × giganteus in the Southeastern US, we compared fitness and spread potential relative to ten grass species comprising 19 accessions under both high and low levels of competition and disturbance. We chose species known to be invasive in the US (positive controls: Arundo donax, naturalized M. sinensis, M. sacchariflorus, Phalaris arundinacea, Sorghum halepense) and non-invasive (negative controls; Andropogon gerardii, ornamental M. sinensis, Panicum virgatum, Sorghum bicolor, Saccharum spp.). This novel design allows us to make relative comparisons of risk among species with varying invasiveness. After three years of establishment and growth in Blacksburg, Virginia, neither aboveground disturbance nor interspecific weed competition influenced fitness for fertile M. × giganteus or our positive and negative control groups. Fertile M. × giganteus produced 346% and 283% greater aboveground biomass than our positive and negative species, respectively. However, fertile M. × giganteus produced 74% fewer inflorescences m -2 than our positive controls and 7% and 51% fewer spikelets inflorescence -1 than the positive and negative control species. After 18 months of growth, we observed the vegetative and seedling spread of three of our positive control species (S. halepense, P. arundinacea, and M. sacchariflorus) Smith et al. / NeoBiota 25: 47-71 (2015) 48 into receiving areas of both high and low competition. After 24 months of growth, numerous species were observed outside the cultivated plot including fertile M. × giganteus and 50% of negative control species. Notably, in three years sterile M. × giganteus 'Illinois' and Arundo donax never moved from the cultivated plot. The addition of fertile seed appears to increase the potential for offsite movement, but within the geographic confines of our empirical evaluation, fertile M. × giganteus seedlings are more similar to native P. virgatum and were not nearly as fast growing or as competitive as our positive control S. halepense. The use of numerous species providing relative comparisons allow us to draw important conclusions which may help prepare for widespread commercialization, while providing novel methodology for ecological risk assessment of new species.