Mycinamicin, composed of a branched lactone and two sugars, desosamine and mycinose, at the C-5 and C-21 positions, is a 16-membered macrolide antibiotic produced by Micromonospora griseorubida A11725, which shows strong antimicrobial activity against Gram-positive bacteria. The nucleotide sequence (62 kb) of the mycinamicin biosynthetic gene cluster, in which there were 22 open reading frames (ORFs), was completely determined. All of the products from the 22 ORFs are responsible for the biosynthesis of mycinamicin II and self-protection against the compounds synthesized. Central to the cluster is a polyketide synthase locus (mycA), which encodes a seven-module system comprised of five multifunctional proteins. Immediately downstream of mycA, there is a set of genes for desosamine biosynthesis (mydA-G and mycB). Moreover, mydH, whose product is responsible for the biosynthesis of mycinose, lies between mydA and B. On the other hand, eight ORFs were detected upstream of the mycinamicin PKS gene. The myrB, mycG, and mycF genes had already been characterized by Inouye et al. The other five ORFs (mycCI, mycCII, mydI, mycE, and mycD) lie between mycA1 and mycF, and these five genes and mycF are responsible for the biosynthesis of mycinose. In the PKS gene, four regions of KS and AT domains in modules 1, 4, 5, and 6 indicated that it does not show the high GC content typical for Streptomyces genes, nor the unusual frame plot patterns for Streptomyces genes. Methylmalonyl-CoA was used as substrate in the functional units of those four modules. The relationship between the substrate and the unusual frame plot pattern of the KS and AT domains was observed in the other PKS genes, and it is suggested that the KS-AT original region was horizontally transferred into the PKS genes on the chromosomal DNA of several actinomycetes strains.